1. Vorkommen:

1) allg. Lösung $x = -ax$: $x(t) = A \cdot \cos(\omega t + \phi)$ mit $\omega = \sqrt{a}$

 oder $x(t) = A \cdot \sin(\omega t + \phi)$

 oder $x(t) = A \cdot \cos(\omega t) + B \cdot \sin(\omega t)$

2) Einfluß Dämpfungstom:

 a) Koinzidente Verringerung der Amplitude ($A(t) = A_0 e^{-\alpha t}$)

 b) Verringerung der Frequenz ($\omega = \sqrt{\omega_0^2 - \beta^2}$) ($\beta = \frac{q}{2m}$)

3) Resonanzkurve gedämpft.

\[A \]

4) Ding für Wellen: $\frac{\partial^2 \xi}{\partial t^2} = C \cdot \frac{\partial^2 \xi}{\partial x^2}$ mit $C = \left(\frac{\omega}{K} \right)^2$

5) Superposition: Kräfte sind wechselwirkend addierbar

\[F_{\text{eff}} = \sum F_i \]

6) E-Feld 2 Ladungen:

\[\text{Diagramm des elektrischen Feldes mit zwei Ladungen} \]
7) Red E-Feld → B-Feld: \[\vec{E}(t) \equiv 0 \frac{N}{ms} \]

8) Mindestabstand Objekt-Objekt: \[d > f_1 \]

2. Quiz:

1. Bewegungsmaske: a) f b) V c) f d) f

2. L.m. Wellen: a) V b) V c) f d) V

3. Ferromagnetismus: a) f b) V c) f

Aufgaben:

1.) Federpendel: \(M = 2 \, \text{kg}, \Delta = 10 \, \text{cm}, \Delta z = 10 \, \text{cm} \)

\(t = 0 \) loslassen

\[
\begin{align*}
&\text{a.) } D = z^2 : D \cdot \Delta = M \cdot g \implies D = \frac{M \cdot g}{\Delta} = 196 \, \frac{N}{m} \\
&\text{b.) } E = \frac{D}{2} \cdot \Delta z^2 = 0,98 \, J \\
&\text{c.) } z(t) = A \cdot \cos(\omega t + \phi) \quad \omega = \sqrt{\frac{D}{M}} = 9,94 \, \text{rad/s} \\
&\text{t=2s: } z(2s) = \Delta z \cdot \cos(2\pi t) = -1,94 \, \text{cm} \quad (\text{obenhalb } z=0 \text{m})
\end{align*}
\]

\[\text{d.) } v(t=2\,s)^2: \]

\[\dot{z}(t) = -A \cdot \omega \cdot \sin(\omega t) = - \frac{1}{5} \, \frac{m}{s} \]
2.) Zwei Wellen gegeneinander: \(\lambda = 2 \text{ m} \), \(A_1 = 1 \text{ m}, A_2 = 0.8 \text{ m} \)

a.) minimale Schwingungsumplitude:

\[
\text{allg.: } x_{gs}(t) = (A_1 + A_2) \cos(\omega t) \cos(\lambda x) + (A_1 - A_2) \cos(\omega t + \kappa x)
\]

\(\Rightarrow A_{\text{min}} = A_1 - A_2 = 0.2 \text{ m} \)

b.) maximale Amplitude: (7.8 \(\kappa x = 0 \))

\(\Rightarrow A_{\text{max}} = A_1 + A_2 = 1.8 \text{ m} \)

c.) Differenz Max.-Min.: \(\kappa x = \frac{\pi}{2} \) \(\Rightarrow \frac{2\pi x}{\lambda} = \frac{\pi}{2} \) \(\Rightarrow \lambda = 4x \Rightarrow x = \frac{\lambda}{4} \) \(\Rightarrow 0.5 \text{ m} \)

3.) Elektronen im gleichförmigen Felde:

\(q_1 = 3 \times 10^{-19} \text{ C} \), \(q_2 = -2 \times 10^{-19} \text{ C} \), \(q_3 = 10^{-19} \text{ C} \)

\(l = 10^{-10} \text{ m} \), \(\varepsilon = 4.3 \times 10^{-10} \text{ C} \)

Koordinaten:

\[
\begin{align*}
X_1 &= \left(-\frac{q_1}{2}, 0, 0 \right) \\
X_2 &= \left(0, 0.58 \varepsilon, 0 \right) \\
X_3 &= \left(0, -0.29 \varepsilon, 0 \right)
\end{align*}
\]

\[|X_1| = |X_2| = |X_3| \]

\[
\Rightarrow F_{E\text{m}} = F_{E_1} + F_{E_2} + F_{E_3} = -\left(F_{E_1} + F_{E_2} + F_{E_3} \right)
\]

\[
= -\frac{e}{4\pi\varepsilon_0} \left(\frac{q_1}{|X_1|^3} \cdot X_1 + \frac{q_2}{|X_2|^3} \cdot X_2 + \frac{q_3}{|X_3|^3} \cdot X_3 \right) = -\frac{e}{4\pi\varepsilon_0|X_1|^3} \cdot \left(9.37 \times 10^{-19} - 3.029 + 1.12 \right)
\]

\[= 4.3 \times 10^{-19} \text{ N} \]

\[-3.029 + 1.12 \]

\[-3.029 - 2.058 - 0.79 \]
4. Milne-Thomson:

\[f_1 = f_2 = 1 \text{ cm}, \quad d = 21.9 \text{ cm} \]
\[g = 1.05 \text{ cm}, \quad g = 1 \text{ cm} \]

A) \(B_1 = \frac{2}{g_1} \):

\[
\frac{1}{f} = \frac{1}{b_1} + \frac{1}{g_1} \implies \frac{1}{b_1} = \frac{1}{f} - \frac{1}{g_1} \implies b_1 = \frac{f \cdot g_1}{g_1 - \frac{f}{g_1}} = \frac{g_2 - \frac{f}{g_1}}{\frac{f}{g_1}} = 21 \text{ cm} \implies g_2 = 0.9 \text{ cm} \\
\frac{B_1}{g} = \frac{b_1}{g} \implies B_1 = \frac{f}{g} \cdot b_1 = 20 \text{ cm} \\

b) \(B_2 = \frac{2}{g_2} \):

\[
b_2 = \left(\frac{1}{b_2} \right)^{-1} = \frac{f \cdot g_2}{g_2 - \frac{f}{g_2}} = -9 \text{ cm} \implies B_2 = \frac{B_1 \cdot b_2}{g_2} \quad b_2 = 200 \text{ cm} \\

C) \(b_2 = \frac{2}{g} \):

\[\text{g cm} \]

D) \(V = \frac{2}{g_2} \):

\[
V = \frac{B_2}{g} \cdot \frac{S}{b_2} \quad \text{with} \quad S = 2.5 \text{ cm} \\
= 555 \\
\]