1.) Minimalbed. Impulsbedingung:
Es darf keine Kraft von außen am System angreifen.

2.) Anteil skalare Größe: \(F(t) \rightarrow x(t) \): 6

3.) Gesetz \(F, x, T, \omega \):
\[
X \times F = T \cdot \omega
\]
\[
\omega = \frac{d\omega}{dt}
\]

4.) äußere Scheibe:

5.) Poisonzahl:
\[
\mu = \frac{\Delta d}{\Delta t \cdot \Delta v}
\]
Poisonzahl misst relative Dickenänderung pro Längenänderung, wenn im elastischen Bereich in Längsrichtung getestet / gestrafft wird.

6.) Freihheitsgrade vibrierender Körper: \(N_{es} = 6 \cdot 3 = 18 \)
\[N_{lib} = 18 - 6 = 12\]

7.) komplexe Flaumigkeit: Direkt der sich in geeigneten, geeignet ermittelt durch \(G_{e} \) + Flüssigkeit im Gleichgewicht versehen.

8.)
\[\text{pol.} = 2 \times \text{pol.} \text{polarem } + \text{polarem} \]
A) Problemtexte:

1) Keilwassermotor

\[V_K = V_u + V_p = \begin{pmatrix} V_u' \cos \alpha + V_p \\ V_u' \sin \alpha \end{pmatrix} = \begin{pmatrix} 6.7/8 \\ 2.7/8 \end{pmatrix} \frac{m}{s} \]

a) \[V_K = \sqrt{2} \]

\[V_K = V_u' + V_p = \begin{pmatrix} V_u' \cos \alpha + V_p \\ V_u' \sin \alpha \end{pmatrix} = \begin{pmatrix} 6.7/8 \\ 2.7/8 \end{pmatrix} \frac{m}{s} \]

b) Max. Höhe Keilwasserkugel: \[H = 2 \]

\[H = h + h' \]

\[V_K \times (\text{const}) \Rightarrow \frac{1}{2} V_{uy}^2 = m.g h' \Rightarrow h' = \frac{V_{uy}^2}{2g} = 3.94 m \]

\[\Rightarrow H = 4.44 m \]

C) Wie lange unterwegs?

\[y(t) = -\frac{a t^2}{2} + h + V_{uy} \cdot t = 0 \Rightarrow t^2 - \frac{2V_{uy}}{g} \cdot t - \frac{2h}{g} = 0 \]

\[\Rightarrow t_{12} = \frac{V_{uy}}{g} \pm \sqrt{\left(\frac{V_{uy}}{g}\right)^2 + \frac{2h}{g}} = 2.83 + 3.00 = 5.83 s \]

d) Abschnitt Panzerwasserkugel bei Auffahren:

\[x_{Keil} = V_K \times t \]

\[x_{Panzer} = V_p \times t \]

\[\Delta = \frac{V_K - V_p}{280} \cdot t \]

\[= 2.80 m \]
2) Planet um 120 min = Tag

\[
\omega = (91) \ \text{rad} \ \text{s}^{-1}
\]

(a) \[|V_{\text{tang}}| = ?\]

\[
|V| = |\omega \times R| = |\omega| \cdot |R| = \frac{5600 \ \text{m}}{\text{s}}
\]

(b) Eigenbewegung \ \ddot{M} : M = \dot{m} \ \text{kg}

\[
\ddot{M} = M \left(\frac{g - \omega^2 R + \omega E R}{g} \right) = M \left(\frac{9.81 - 4.84 + 0.03}{9.81} \right) = 3.6 \ \text{kg}
\]

(c) Eigenbewegung bei 30° Baudenreif:

\[
\ddot{M}_{30} = M \left(\frac{g - \omega^2 R + \omega E R}{g} \right) = M \left(\frac{9.81 - 3.88 + 0.03}{9.81} \right) = 4.4 \ \text{kg}
\]

3) Stab, Last, Masse (101)

\[
F = 400 \ \text{N} \quad E = 3.1 \cdot 10^6 \ \text{Pa} \quad \mu = 0.134
\]

(a) % Verlängerung: \[E \frac{\Delta L}{L} = \frac{F}{\pi \frac{D^2}{4}} \Rightarrow \frac{\Delta L}{L} = \frac{F}{EP \frac{D^2}{4}} = 0.025 \%
\]

(b) % Dünnung: \[\mu = \frac{\Delta D}{D} \Rightarrow \frac{\Delta D}{D} = \mu \frac{\Delta L}{L} = 0.01036 \%
\]
c) Volumenänderung:

\[V_1 = \pi \frac{D^2}{4} \cdot L \quad V_2 = \pi \frac{(D-\Delta D)^2}{4} \cdot (L+\Delta L) \quad \Delta V = V_2 - V_1 \]

\[\Rightarrow \frac{\Delta V}{V} = \frac{(D-\Delta D)^2(D+\Delta D)-D^4}{D^3L} = \frac{D^2L + D^2\Delta L + D^2\Delta D - 2D\Delta D(D+\Delta D)}{D^3L} \]

\[= \frac{\Delta L}{L} + \left(\frac{\Delta D}{D} \right)^2 + \left(\frac{\Delta D}{D} \right)^2 \frac{\Delta L}{L} - 2 \frac{\Delta D}{D} \frac{\Delta L}{L} \]

\[\approx \frac{\Delta L}{L} - 2 \frac{\Delta D}{D} \]

\[= 0,01\% \quad \text{(positiv)} \]

4. a) Isobare Erhöhung

\[p_0 = 1 \text{ bar} \quad T = \text{constant} \quad \Rightarrow \quad p_2 V_2 = p_1 V_1 \quad \Rightarrow \quad p_2 = p_1 \cdot \frac{V_1}{V_2} = 2 \cdot 10^5 \text{Pa} \]

b) Arbeit:

\[W = \int p(V) \mathrm{d}V = \int \frac{V_2}{V_1} \mathrm{d}V \]

\[= \frac{V_2}{V_1} \cdot \frac{V_1}{V_1} = p_1 \cdot V_1 \cdot \ln \frac{V_2}{V_1} = -63 J \]

69 J müssen für die Kompression geleistet werden am System.
\(\Pi_3 = 2 \)

\[dU = C_V d\Pi_3 = \frac{3}{2} Nk d\Pi_3 \]

\[dW = p \cdot dV \quad dq = 0 \quad (\text{adiabatic}) \]

\[\Rightarrow \quad \frac{3}{2} Nk d\Pi_3 = -pdV = -\frac{Nk\Pi_3}{V} dV \]

\[\Rightarrow \quad \frac{3}{2} \cdot \frac{1}{\Pi_3} d\Pi_3 = -\frac{1}{V} dV \]

\[\Rightarrow \quad \frac{3}{2} \ln \frac{\Pi_3}{\Pi_1} = -\ln \frac{V_3}{V_1} = -\ln 2 \]

\[\Rightarrow \quad \ln \frac{\Pi_3}{\Pi_1} = -\frac{2}{3} \ln 2 \quad \Rightarrow \quad \Pi_3 = \Pi_1 \cdot e^{-\frac{2\ln 2}{3}} = \frac{18}{16} \Pi_1 \]