Vorlesung:

1.) DGL für harmonische Schwingung:
 \[x(t) = -\omega^2 x(t) \]
 a 1st order.

2.) für Eigenfrequenz: \[f_A = f_0 \]

3.) Anmerkung: 5 Pendel ließe sich Eigenfrequenz:

 ![Pendeldiagramm]

4.) Unendlich lange Welle / Scherende Welle:
 St. Welle: Es gibt Stellen, an denen die Schwingungsspannung
 0 ist (Knoten). Wird gilt es bei Scherenden Welle nicht.

5.) Schwingungsgröße bei Scherendenwellen: Luftdruck p

6.) High Voltage: Eine Ladung q hat am (+)-Pol eine höhere
 Energie als am (+)-Pol.

7.) 3 Vorschriften B; bewegte Ladung, mag. Dipol,
 sich zeitlich ändern, E-Feld

8.) 2 Unendlich virtuelles + reelles Bild:
 - VLT. (virtuelles) Bild kollidiert mit Objekt
 - reelles Bild tritt außerhalb der Objekt hinzu
 - virtuelles Bild auf Seite Gegenstand; reelles Bild auf anderen Seite
 - von links von rechts
Aufgaben:

1.) Fein: $b = 100 \, \text{N/m}, \Delta x_1 = 0,05 \, \text{m}$

a.) $m = 2$ \quad b.) $\Delta x_1 = m \cdot g$

\[m = \frac{b \cdot \Delta x_1}{g} = 0,5 \, \text{kg} \]

b.) $\varpi = \frac{2 \pi}{\tau} = \left| \frac{b}{m} \right| \quad \Rightarrow \quad \tau = 2 \pi \cdot \left| \frac{m}{b} \right| = 0,45 \, \text{s}$

(c) $V_{\text{max}} = \frac{2}{\pi} \cdot \left(\frac{\varpi}{2} \right)^2 = \frac{m}{2} \cdot \frac{2}{\varpi} \cdot V_{\text{max}}$

\[V_{\text{max}} = \left| \frac{b}{m} \right| \cdot \Delta x_2 = 0,7 \cdot \frac{m}{5} \]

2.) Engelpfeile: Ohne Symmetrie

(a) $\nu_p = \frac{330 \, \text{m/s}}{5} \quad \nu = 110 \, \text{Hz} \quad \nu = \frac{\lambda}{\tau}$

\[\frac{\lambda}{\tau} = \frac{\lambda}{\frac{b}{m}} = \lambda \cdot \frac{b}{m} \quad \Rightarrow \quad \lambda = \frac{\nu}{\tau} \frac{m}{b} \]

\[\lambda = \frac{\nu}{\tau} \frac{m}{b} = 0,75 \, \text{m} \]

(b) $\nu_2 = 2 \quad \nu = \frac{3}{4} \lambda \quad \Rightarrow \quad \nu_2 = \frac{3}{4} \lambda$

\[\lambda = \frac{\nu_2}{\frac{3}{4} \lambda} \quad \nu_2 = 3 \cdot \nu_1 = 330 \, \text{Hz} \]

(c) $\nu_p = \frac{330 \, \text{m/s}}{5} \quad \nu_1 = 2 \quad \nu = \nu_p \cdot \nu_1 \cdot \nu_1 \Rightarrow \nu_1 \cdot \nu_1 = \frac{\nu_p \cdot \nu_1}{\nu_1 \cdot \nu_1} \cdot \nu_1 \cdot \nu_1$

\[= 330 \, \text{Hz} \]

\[= 320 \, \text{Hz} \]
3) Punktledungen: \[G_1 = 5 \cdot 10^{-6} \text{ C} \quad Q_2 = 4 \cdot 10^{-6} \text{ C} \quad q_{ext} = 7 \cdot 10^{-9} \text{ C} \]
\[m_{ext} = 2 \cdot 10^{-6} \text{ kg} \]
\[a = 2 \quad b = 5 \cdot 10^{-4} \text{ m} \]
\[c = 4 \cdot 10^{-4} \text{ m} \]
\[E_0 = 5.8 \cdot 10^{-12} \text{ A} \cdot \text{s} \]
\[V/m \]

0) \[E_{ext} = \frac{2}{\varepsilon_0} \]
\[\chi(\phi_1) = (0,0) \Rightarrow \chi(\phi_2) = (\phi_1+b) \]
\[= \frac{1}{|c-a|^3} \]
\[= \frac{1}{|c-b|^3} \]
\[c-a = (\frac{c}{a}) \]
\[c-b = (\frac{c}{b}) \]

\[F_1 = \frac{G_1 \cdot q_{ext}}{4 \pi \varepsilon_0 m} \cdot \frac{1}{|c-a|^3} \]
\[F_2 = \frac{G_2 \cdot q_{ext}}{4 \pi \varepsilon_0 m} \cdot \frac{1}{|c-b|^3} \]

\[F_1 = 4 \cdot 10^5 \text{ N/m} \cdot \left(\frac{4}{5} \right) \cdot 10^{-4} \text{ m} \]
\[F_2 = 8.5 \cdot 10^3 \text{ N/m} \cdot \left(\frac{4}{5} \right) \cdot 10^{-4} \text{ m} \]

\[(c-a)^2 = (\alpha + b)^2 \]
\[(c-b)^2 = (\alpha + b)^2 \]

\[F_{total} = F_1 + F_2 = 8.5 \text{ N} \cdot \left(\frac{4}{5} \right) \cdot (4, -1) \]

\[= 8.5 \text{ N} \cdot \left(\frac{12}{5} \right) = \frac{63}{5} \text{ N} \]

b) \[\beta \text{ relative } \phi_1 \quad \gamma \text{ relative } \phi_2 \]

\[\beta = \arctan \left(\frac{F_{ext} \cdot x}{F_{ext} \cdot y} \right) = 55^\circ \]

(c) \[\frac{F_{ext}}{F_{ext}} = 1 \]
a.) **Objektiv:** \(\frac{b}{B} = 2 \)

\[
\frac{1}{B} = \frac{1}{g} + \frac{1}{b} \quad \Rightarrow \quad b = \frac{1}{\frac{1}{g} - \frac{1}{B}} = 110 \text{ mm}
\]

\[
\frac{B}{G} = \frac{b}{g} \quad \Rightarrow \quad B = 6 \cdot \frac{b}{g} = 100 \text{ mm}
\]

b.) \(\frac{B'}{B} = -2 \) (sinpunkts, Bild) \(\Rightarrow \ b = 2 \)

\[
\frac{B'}{B} = \frac{b'}{g'} = -2 \quad g' = B - b \quad \frac{1}{f_2} = \frac{1}{g'} + \frac{1}{b'}
\]

\[
\Rightarrow \ b' = -2g' = -2(B - b) \quad \Rightarrow \ \frac{1}{f_2} = \frac{1}{B - b} - \frac{1}{2b} = \frac{19}{2b} \quad \Rightarrow \quad \frac{B'}{B} = \frac{19}{2b}
\]

\[
\Rightarrow \ f_2 = \frac{2b}{19} \cdot (B - b) \quad \Rightarrow \quad B = \frac{19}{2} f_2 + b = 129 \text{ mm}
\]

c.) \(v = 2 \)

\[
\begin{align*}
\frac{B'}{g'} \cdot \frac{G}{b'} & = 380 \\
S = 25 \text{ cm} & \quad \Rightarrow \quad \frac{G}{b'} = 10 \Rightarrow \ B' = \frac{380}{S} = 68.12
\end{align*}
\]